Abstract

The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.