Abstract

BackgroundAcetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components. This study aimed to investigate whether plasma membrane vesicles (PMVs) from human umbilical cord mesenchymal stem cells (hUCMSCs) could be exploited as a novel stem cell therapy for APAP-induced liver injury.MethodsPMVs from hUCMSCs were prepared with an improved procedure including a chemical enucleation step followed by a mechanical extrusion. PMVs of hUCMSCs were characterized and supplemented to hepatocyte cultures. Rescue of APAP-induced hepatocyte damage was evaluated.ResultsThe hUCMSCs displayed typical fibroblastic morphology and multipotency when cultivated under adipogenic, osteogenic, or chondrogenic conditions. PMVs of hUCMSCs maintained the stem cell phenotype, including the presence of CD13, CD29, CD44, CD73, and HLA-ABC, but the absence of CD45, CD117, CD31, CD34, and HLA-DR on the plasma membrane surface. RT-PCR and transcriptomic analyses showed that PMVs were similar to hUCMSCs in terms of mRNA profile, including the expression of stemness genes GATA4/5/6, Nanog, and Oct1/2/4. GO term analysis showed that the most prominent reduced transcripts in PMVs belong to integral membrane components, extracellular vesicular exosome, and extracellular matrix. Immunofluorescence labeling/staining and confocal microscopy assays showed that PMVs enclosed cellular organelles, including mitochondria, lysosomes, proteasomes, and endoplasmic reticula. Incorporation of the fusogenic VSV-G viral membrane glycoprotein stimulated the endosomal release of PMV contents into the cytoplasm. Further, the addition of PMVs and a mitochondrial-targeted antioxidant Mito-Tempo into cultures of APAP-treated HepG2 cells resulted in reduced cell death, enhanced viability, and increased mitochondrial membrane potential. Lastly, this study demonstrated that the redox state and activities of aminotransferases were restored in APAP-treated HepG2 cells.ConclusionsThe results suggest that PMVs from hUCMSCs could be used as a novel stem cell therapy for the treatment of APAP-induced liver injury.

Highlights

  • Acetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components

  • The results suggest that plasma membrane vesicles (PMVs) from human umbilical cord mesenchymal stem cells (hUCMSCs) could be used as a novel stem cell therapy for the treatment of APAP-induced liver injury

  • We investigated whether PMVs of hUCMSCs, which are highly similar to hUCMSCs in terms of cell surface markers, the transcript profile, and cellular organelles, could be exploited for novel stem cell therapy using APAP-induced damage in HepG2 cell model

Read more

Summary

Introduction

Acetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components. Acute liver failure (ALF) is a clinical syndrome characterized by icterus, coagulopathy, and encephalopathy due to a sudden decline in liver function, and acetaminophen (APAP) overdose is the leading cause of ALF in Western countries [1]. Excessive intake can cause hepatic injury and even leads to ALF in humans [2]. The primary cause of APAP-induced liver injury is the formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione and results in cytotoxic NAPQI protein adducts [3]. N-acetylcysteine (NAC) is the only clinically used antidote, acts as a glutathione precursor, and is most effective when administered at the early time points to prevent protein binding of NAPQI. NAC functions at the earliest stage of NAPQI-driven dysfunction and incurs a limited therapeutic window [5]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.