Abstract

Purpose This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in comparison to other optimization methods, two sets of test problems consisting of 13 constrained benchmark functions and 6 benchmark trusses are investigated numerically. The results indicate that the performance of the proposed method is competitive with other considered state-of-the-art optimization methods. Design/methodology/approach In this paper, a new physically-based metaheuristic algorithm called plasma generation optimization (PGO) algorithm is developed for solving constrained optimization problems. PGO is a population-based optimizer inspired by the process of plasma generation. In the proposed algorithm, each agent is considered as an electron. Movement of electrons and changing their energy levels are based on simulating excitation, de-excitation and ionization processes occurring through the plasma generation. In the proposed PGO, the global optimum is obtained when plasma is generated with the highest degree of ionization. Findings A new physically-based metaheuristic algorithm called the PGO algorithm is developed that is inspired from the process of plasma generation. Originality/value The results indicate that the performance of the proposed method is competitive with other state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.