Abstract

Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two‐dimensional (2D) MoS2 materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma‐implanted into MoS2 to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm−2, the overpotential of Ag500‐MoS2@Ni3S2/NF is 150 mV and the Tafel slope is 41.7 mV dec−1. First‐principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two‐electrode overall water splitting system with Ag500‐MoS2@Ni3S2/NF, a small cell voltage of 1.47 V yields 10 mA cm−2 and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS2 boding well for hydrogen production by commercial water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.