Abstract
This paper reports the measurements of plasma current sheath (PCS) dynamics, the energy dissipation processes, and the plasma focus (PF) electrical characteristics, particularly during the axial phase discharge in a Mather-type PF device (EAEA-PF1) energized with a 30 µF capacitor bank charged with 8, 10 and 12 kV. All these works are carried out under discharge conditions where the optimal PF action is achieved. At each charging voltage (Vch), 8 kV, 10 kV and 12 kV, the optimal PF action is studied for different Argon gas pressures (P) ranging from 0.4 to 1.2 Torr. The results show that the best PF is formed at Vch = 8 kV and P = 0.6 Torr, Vch = 10 kV and P = 0.8 Torr, and Vch = 12 kV and P = 0.8 Torr. The implosion velocity (Vz) results of PCS show that the maximum value of Vz (4.48 cm/µs) occurs at the end of the axial phase (i.e., at the coaxial electrode muzzle), which is detected at Vch = 12 kV and P = 0.8 Torr. Moreover, a less inefficient snowplow action is observed under these discharge conditions. The energy dissipation process data indicate that at Vch = 12 kV and P = 0.8 Torr, the ratio between the total energy dissipation and the input energy has a maximum value of ≅ 90%, and the minimum residual energy left on the condenser bank (175.39 J) is also achieved under these discharge conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.