Abstract

ABSTRACT We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma β, distributed over three orders of magnitude, from 0.01 to 10. In all cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to −5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with β (from around −3.6 for small values to around −2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, d i , for β ≪ 1 and to the ion gyroradius, , for β ≫ 1, i.e., to the larger between the two scales in both the extreme regimes. For intermediate cases, i.e., β ∼ 1, a combination of the two scales is involved. We infer an empiric relation for the dependency of the spectral break on β that provides a good fit over the whole range of values. We compare our results with in situ observations in the solar wind and suggest possible explanations for such a behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.