Abstract

Monoethylene glycol (MEG) is used to produce polyester fibers and polyethylene terephthalate resins. It is also utilized in antifreeze, pharmaceuticals, and cosmetics applications. In this research, we consider the development of a novel process plant that produces MEG from ethylene. The proposed ethylene-to-ethylene oxide (EO) plant is integrated with an EO-to-MEG plant to reduce utility costs and recover high-value products. Energy-saving opportunities are analyzed via heat integration tools. Furthermore, a multitube glycol reactor is used in conjunction with a novel MTO catalyst in the ethylene-to-EO reactor. Our results demonstrate that the integrated EO/EG plant produces ethylene glycols with that same purity and product recovery as conventional designs. A comparative economic assessment based on a 200,000 t/y plant indicates that process integration techniques can reduce costs significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.