Abstract

Pre-mRNA splicing or the removal of introns from precursor messenger RNAs depends on the accurate recognition of intron sequences by the plant splicing machinery. The major components of this machinery are small nuclear ribonucleoprotein protein particles (snRNPs) which consist of snRNAs and snRNP proteins. We have analysed various aspects of intron sequence and structure in relation to splice site selection and splicing efficiency and we have cloned snRNA genes and a gene encoding the snRNP protein, U2B". In the absence of an in vitro splicing system for plants, transient expression in protoplasts and stable plant transformations have been used to analyse splicing of intron constructs. We aim to address the function of the UsnRNP-specific protein, U2B", via the production of transgenic plants expressing antisense U2B" transcripts and epitope-tagged U2B" protein. In addition, we have cloned genes encoding other proteins which potentially interact with RNA, such as RNA helicases, and strategies involving transgenic plants are being developed to analyse their function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.