Abstract
Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.