Abstract
ABSTRACTWestern Indian Himalaya is very rich in biodiversity. Being a cold climatic region, it possesses various psychrotolerant and psychrophilic microorganisms. Psychrotolerant bacterium Dyadobacter sp. was isolated from this region and studied for its plant growth promoting potential against four legumes and finger millet. This bacterium was able to grow at nitrogen (N) deficient medium at both 10°C and 28°C and gave positive nifH amplification that confirms the psychrotolerant and diazotrophic nature of this bacterium. Pot trial-based study showed that this bacterium was able to promote plant growth by fixing atmospheric nitrogen (N2) and making it available to plants. Agronomical parameters, leaf nitrate reductase activity, and total chlorophyll content were recorded at 30, 45, 60, and 90 days after sowing and found to be increased over their respective controls. The 16S rDNA and nifH genes were quantified by q-PCR to study the dynamics of total bacterial and diazotrophic abundance due to inoculation of Dyadobacter sp. in soil. Soil chemical properties related to soil fertility were also studied at different time intervals after sowing. We found positive correlation among soil pH, soil nifH gene abundance, soil nitrate concentration, and plant leaf nitrate reductase activity. PCR-DGGE was performed to study persistence of Dyadobacter sp. in soil after inoculation, which showed good persistence of plant growth promoting rhizobacteria (PGPR). Hence, it is concluded that Dyadobacter sp. has potential to promote plant growth by fixing atmospheric N2 and making it available to plant. Further, psychrotolerant nature of this bacterium can be exploited to enhance plant growth in cold climate agriculture due to its ability to fix atmospheric N2 at low temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.