Abstract

Pathogen avirulence genes encode for effector molecules that play a crucial role in the process of pathogen colonization of plant tissue. Successful host defense requires rapid and efficient detection of the pathogen avirulence factors. In the last few years, much progress has been made in delineating the plant molecular sentinels that participate in pathogen identification. Because this ability is genetic information that is 'hard-wired' into the genome, it is called 'innate immunity' and it draws its origins from a phylogenetically ancient form of immunity common to plants and animals. Conservation is shown in many of the functional molecular motifs of innate genes such as the Toll/interleukin 1 receptor domains, nucleotide binding domains and structures that contain leucine rich repeats. Novel plant molecular surveillance domains also include pathogen pattern recognition by coiled-coil domains and specialized kinases. The rapid evolution of plant innate immunity genes is readily detected in their sequence polymorphism, by their massive amplification and appearance in the genome in a clustered organization. By comparative biology of highly diverged innate immunity systems we can enhance our appreciation of the truly basic forces that have shaped its evolution in mutlicellular organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.