Abstract

In the presence of an accessory DNA bending protein, the bacterial site-specific beta recombinase catalyzes resolution and DNA inversion. Five different maize high mobility group B (HMGB) proteins were examined for their potential to facilitate beta recombination in vitro using DNA substrates with different intervening distances (73-913 bp) between two directly oriented recombination (six) sites. All analyzed HMGB proteins (HMGB1 to HMGB5) could promote beta recombination, but depending on the DNA substrate with different efficiencies. The HMGB1 protein displayed an activity comparable to that of the natural promoting protein Hbsu, whereas the other HMGB proteins were less effective. Phosphorylation of the HMGB1 protein resulted in an increased efficiency of HMGB1 to promote beta recombination. Analyses of DNA substrates with closely spaced six sites demonstrated that in the presence of HMGB1 the recombination rate was correlated to the distance between the six sites, but independent of the helical orientation of the six sites. Using a Bacillus subtilis strain defective in Hbsu, the coexpression of beta recombinase and HMGB1 (or a truncated HMGB1 derivative) revealed that a plant HMG-box domain protein is sufficient for assisting beta to catalyze recombination in vivo. Our results using beta recombination as a model system suggest that the various plant HMGB proteins (and their posttranslationally modified versions) have the potential of forming a repertoire of different DNA structures, which is compatible with the idea that the HMGB proteins can act as architectural factors in a variety of nucleoprotein structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.