Abstract

In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.