Abstract
The formation of resonant planets pairs in exoplanetary systems involves planetary migration inside the protoplanetary disc: an inwards migrating outer planet captures in Mean Motion Resonance an inner planet. During the migration of the resonant pair of planets, the eccentricities are expected to rise excessively, if no damping mechanism is applied on the inner planet. We express the required damping action to match the observations, and we show that the inner disk can play this role. This result applies for instance to the system GJ 876: we reproduce the observed orbital elements through a fully hydrodynamical simulation of the evolution of the resonant planets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.