Abstract

The plane-wave scattering from perfectly conducting two-dimensional cylinders of arbitrary squareness parameter is investigated. A uniform geometrical optics (UGO) solution valid across the smooth caustics generated by the surface poles or zero curvature (inflection) points is developed based on physical optics (PO). The classical geometrical optics solution is modified using a multiplicative transition function that compensates for the caustic singularities and accounts for the complex ray contributions emanating from nonspecular scattering centers located near the surface poles. The transition function is heuristically derived on the basis of the PO radiation integral and involves a generalized (higher-order) form of Airy functions. The resulting UGO solution for the scattered field is simple, easy to apply, and computationally efficient for electrically large cylinders. It compares well with physical optics (numerical integration) and moment-method solutions for both backscatter and limited bistatic configurations.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.