Abstract

An explicit solution is found for the problem of uniform horizontal flow of a two-layer fluid of infinite depth past a circular cylinder. The cylinder axis is perpendicular to the flow. The problem is solved within a linear formulation. The solution of the problem is expressed in the form of rapidly converging series with coefficients determined from a recurrence relation. The first seven terms of the series yield the values of the hydrodynamic loads with a relative accuracy of 10−6. The results are in good agreement with the known values for similar problems in a homogeneous fluid. Tables of the lift and wave drag are given for homogeneous and two-layer fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.