Abstract

Planar parabolic refractive lenses are becoming the key optical elements for many hard x-ray microprobe and microscopy applications at third generation synchrotron radiation sources (e.g. the ESRF), as well as they are promising candidates for future X-ray free-electron lasers. In this paper we review all technological limitations taking place during fabrication of silicon and non-silicon refractive lenses and propose some approaches to overcome these limitations in order to fabricate high performance refractive lenses in terms of aperture, gain and focal spot size etc. We propose to use low-temperature silicon bonding techniques as alternative for very deep etching. Combination of two etched silicon structures by bonding of two lenses with relief to relief doubles the lens relief depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.