Abstract
Magnetic actuation system manipulates micro soft or rigid robots by a controllable magnetic field to move them freely in the narrow or enclosed space, which has demonstrated its huge potential in medical interventional surgery and drug delivery. However, the limited working space of paired or area-centered electromagnets restricts its practical applications. In this paper, we propose a convenient coils drive scheme for the scalable electromagnet array, and present an efficient planar magnetic actuation system with a spacious workspace. During the actuation process, our system activates selectively the effective electromagnets neighboring to the magnetic robot by coil selectors, and generates an alternating magnetic field with sufficient gradients to guide the robot's orientation and position. For the soft magnetic pipe, our system can push it to perform the continuous deflections around the stand columns on the plane. For the rigid magnetic cube, the designed magnetic-quadrupole structure allows it to receive various forces from different directions, and achieve a stable displacement in the heterogeneous magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.