Abstract
The swirling flow velocity profiles can be strongly influenced by the outlet conditions of the combustion chamber especially at subcritical flow conditions. The effect of such changes on the mean flow or coherent structures is still unclear. It is investigated in the present work in an industrial swirl inducing burner in cold flow conditions with help of PIV. Proper orthogonal decomposition (POD) as well as acoustic measurements were used to characterize the coherent structures shed from the burner mouth. The combustor length (670, and 2020mm) and the outlet area contraction ratio (1, 0.56, 0.27, and 0.09) are varied. Major changes in the flow field are achieved when using a short combustor and the smallest contraction ratio. For this case, a central jet with streamwise velocity is added to the typical central recirculation zone. The POD analysis of the contraction ratios 1 and 0.09 for the long combustor shows that the first helical mode as well as Kelvin Helmholtz vortices are present with minor changes for both cases. At a contraction ratio of 0.09, some new structures at the jet location and near the combustor wall appear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.