Abstract

This paper describes a methodology for assessing critical stress ranges arising in automotive plain bearings during engine operations. An industry-produced and run simulation program provides information on oil film pressure and overall bearing deformation during accelerated performance tests. This code performs an elasto-hydrodynamic lubrication analysis accounting for the compliance of the housing and journal. Finite element analyses of a multilayer bearing are performed to assess the conditions responsible for possible fatigue damage over the bearing lining. The residual stresses arising from the forming and fitting process are first assessed. The stress analyses over the engine cycle show the intensity and distribution of cyclic tensile and compressive stresses in the bearing. The location of maximum stress range is found to be consistent with the damage observed in accelerated fatigue tests. Critical zones are identified in the lining for possible fatigue crack initiation and growth studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.