Abstract
IntroductionRecent data suggest that in addition to glucose, fetal growth is related to maternal triglycerides (TG). To reach the fetus, TG must be hydrolyzed to free fatty acids (FFA) and transported across the placenta, but regulation is uncertain. Placental lipoprotein lipase (pLPL) hydrolyzes TG, both dietary chylomicron TG (CM-TG) and very-low density lipoprotein TG (VLDL-TG), to FFA. This may promote fetal fat accretion by increasing the available FFA pool for placental uptake. We tested the novel hypothesis that pLPL activity, but not maternal adipose tissue LPL activity, is associated with newborn adiposity and higher maternal TG. MethodsTwenty mothers (n = 13 normal-weight; n = 7 obese) were prospectively recruited. Maternal glucose, insulin, TG (total, CM-TG, VLDL-TG), and FFA were measured at 14–16, 26–28, and 36–37 weeks, and adipose tissue LPL was measured at 26–28 weeks. At term delivery, placental villous biopsies were immediately analyzed for pLPL enzymatic activity. Newborn percent body fat (newborn %fat) was assessed by skinfolds. ResultsPlacental LPL activity was positively correlated with birthweight (r = 0.48;P = 0.03) and newborn %fat (r = 0.59;P = 0.006), further strengthened by correcting for gestational age at delivery (r = 0.75;P = 0.0001), but adipose tissue LPL was not. Maternal TG and BMI were not correlated with pLPL activity. Additionally, pLPL gene expression, while modestly correlated with enzymatic activity (r = 0.53;P < 0.05), was not correlated with newborn adiposity. DiscussionThis is the first study to show a positive correlation between pLPL activity and newborn %fat. Placental lipase regulation and the role of pLPL in pregnancies characterized by nutrient excess and fetal overgrowth warrant further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.