Abstract

Double-stranded RNA-dependent protein kinase (PKR) is involved in various cellular functions. We previously reported that PKR regulates osteoblast differentiation, but the specific mechanisms by which this occurs remain unclear. In this study, we investigated the role of PKR in Glycogen synthase kinase 3β (GSK-3β) regulation of osteoblast differentiation. Lithium chloride (LiCl), a GSK-3β inhibitor, increased GSK-3β phosphorylation in MC3T3-E1 and MG-63 cells. LiCl also inhibited Runx2 and expression of its regulated genes, causing inhibition of Alkaline phosphatase activity and mineralization. LiCl injection to the calvaria in mice suppressed bone formation. Further, GSK-3β phosphorylation was increased in osteoblasts, by Akt-independent mechanisms, in which PKR was constitutively inactivated. A PKR inhibitor, 2-aminopurine, also induced GSK-3β phosphorylation in MC3T3-E1 and MG-63 cells. Further, Runx2 and its regulated genes were inhibited in PKR-inactivated osteoblasts, and differentiation was suppressed through a β-catenin-independent pathway. PKR positively regulates the differentiation of osteoblasts by mediating GSK-3β activity through a β-catenin-independent pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.