Abstract
IntroductionPharmacokinetic–pharmacodynamic (PKPD) modelling can improve safety assessment, but few PKPD models describing drug-induced QRS and PR prolongations have been published. This investigation aims to develop and evaluate PKPD models for describing QRS and PR effects in routine safety studies. MethodsExposure and telemetry data from safety pharmacology studies in conscious beagle dogs were acquired. Mixed effects baseline and PK-QRS/PR models were developed for the anti-arrhythmic compounds AZD1305, flecainide, quinidine and verapamil and the anti-muscarinic compounds AZD8683 and AZD9164. RR interval correction and circadian rhythms were investigated for predicting baseline variability. Individual PK predictions were used to drive the pharmacological effects evaluating linear and non-linear direct and effect compartment models. ResultsConduction slowing induced by the tested anti-arrhythmics was direct and proportional at low exposures, whilst time delays and non-linear effects were evident for the tested anti-muscarinics. AZD1305, flecainide and quinidine induced QRS widening with 4.2, 10 and 5.6% μM−1 unbound drug. AZD1305 and flecainide also prolonged PR with 13.5 and 11.5% μM−1. PR prolongations induced by the anti-muscarinics and verapamil were best described by Emax models with maximal effects ranging from 55 to 95%. RR interval correction and circadian rhythm improved PR but not QRS modelling. However, circadian rhythm had minor impact on estimated drug effects. DiscussionBaseline and drug-induced effects on QRS and PR intervals can be effectively described with PKPD models using routine data, providing quantitative safety information to support drug discovery and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacological and Toxicological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.