Abstract

Nitric oxide (NO) is an important molecule involved in nociceptive processing in the central nervous system. The release of NO within the spinal cord has long been implicated in the mechanisms underlying exaggerated pain sensitivity, and administration of NO donors can induce hyperalgesia. To elucidate the supraspinal mechanism responsible for NO-induced nociceptive hypersensitivity, we investigated the modulation of protein kinase C (PKC) and downstream effectors following treatment with the NO donors nitroglycerin and sodium nitroprusside. Both compounds induced a prolonged cold allodynia and heat hyperalgesia, increased levels of c-Fos and IL-1β, and activated NF-κB within periaqueductal grey matter and thalamus. Simultaneously, an increased expression and phosphorylation of PKC γ and ε were detected. To clarify the cellular mechanism involved in the NO-induced hypernociception, we examined the expression of transcription factors that act as PKC downstream effectors. A dramatic hyperphosphorylation of CREB and STAT1 was observed. The i.c.v. administration of the PKC blocker calphostin C prevented the NO-induced hypernociception, the hyperphosphorylation of CREB and STAT1, and partially reduced NF-κB activation. Conversely, the increase of IL-1β was unmodified by calphostin C. These results suggest the relevance of cerebral PKC-mediated CREB and STAT1 activation in the NO donor-induced nociceptive behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.