Abstract

Altered regulation of insulin secretion by glucose is characteristic of individuals with type 2 diabetes mellitus, although the mechanisms that underlie this change remain unclear. We have now generated mice that lack the λ isoform of PKC in pancreatic β cells (βPKCλ–/– mice) and show that these animals manifest impaired glucose tolerance and hypoinsulinemia. Furthermore, insulin secretion in response to high concentrations of glucose was impaired, whereas the basal rate of insulin release was increased, in islets isolated from βPKCλ–/– mice. Neither the β cell mass nor the islet insulin content of βPKCλ–/– mice differed from that of control mice, however. The abundance of mRNAs for Glut2 and HNF3β was reduced in islets of βPKCλ–/– mice, and the expression of genes regulated by HNF3β was also affected (that of Sur1 and Kir6.2 genes was reduced, whereas that of hexokinase 1 and hexokinase 2 genes was increased). Normalization of HNF3β expression by infection of islets from βPKCλ–/– mice with an adenoviral vector significantly reversed the defect in glucose-stimulated insulin secretion. These results indicate that PKCλ plays a prominent role in regulation of glucose-induced insulin secretion by modulating the expression of genes important for β cell function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.