Abstract
Polycrystalline CdS films, with thicknesses typically 20–180 nm, have been chemically deposited on glass substrates using an ammonia–cadmium–thiourea reaction solution. Film elemental composition, thickness and microstructure have been examined using proton-induced X-ray emission, Rutherford backscattering and atomic force microscopy. Analysis indicates that the stability of the deposition temperature plays a critical role in CdS film growth and composition. Films deposited with high temperature stability ( 60±0.5 ° C) show a consistent 1:1 Cd:S atomic ratio for all stages of film growth, and have good substrate adhesion. Films deposited with lower temperature stability ( 60±4 ° C) show initial high S concentrations, followed by a rapid increase in Cd concentration, until a final 1.2:1 Cd:S ratio is achieved. A mechanism is proposed to explain this difference in film composition and properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.