Abstract
Nonalcoholic fatty liver disease, frequently associated with obesity, can lead to nonalcoholic steatohepatitis (NASH) and cirrhosis. The pathophysiology of NASH is poorly understood, and no effective treatment is available. In view of a potential deleterious role for reactive oxygen species (ROS), we investigated the origin of ROS overproduction in NASH. Mitochondrial production of ROS and its alterations in the presence of antioxidant molecules were studied in livers from ob/ob mice that bear a mutation of the leptin gene and develop experimental NASH. N-acetyl-cysteine and the superoxide dismutase (SOD) mimics ambroxol, manganese [III] tetrakis (5,10,15,20 benzoic acid) (MnTBAP), and copper [II] diisopropyl salicylate (CuDIPS) were used to target different checkpoints of the oxidative cascade to determine the pathways involved in ROS production. Liver mitochondria from ob/ob mice generated more O(2)*- than those of lean littermates (P <.01). Ex vivo, all three SOD mimics decreased O(2)*- generation (P <.001) and totally inhibited lipid peroxidation (P <.001) versus untreated ob/ob mice. Those modifications were associated with in vivo improvements: MnTBAP and CuDIPS reduced weight (P <.02) and limited the extension of histological liver steatosis by 30% and 52%, respectively, versus untreated ob/ob mice. In conclusion, these data demonstrate deleterious effects of superoxide anions in NASH and point at the potential interest of nonpeptidyl mimics of SOD in the treatment of NASH in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.