Abstract

Hepatic ischemia-reperfusion injury (IRI) is a severe complication in liver transplantation, hepatectomy, and hemorrhagic shock. As neuropeptides transmit the regulatory signal between nervous and immune systems communication, our previous study documented that pituitary adenylate cyclase-activating polypeptides (PACAP) depressed hepatic Toll-like receptor 4 immune response in liver IRI. Here, we focused on how PACAP suppressed hepatocellular damage and enhanced hepatocyte regeneration in a murine model of partial liver warm IRI. Yes-associated protein (YAP), a cellular modulator of tissue regeneration, was readily induced in wild type (WT) mouse IR-livers. As its induction was failed in PACAP-deficient livers, PACAP supplement enhanced YAP expression in WT mouse and promoted its nuclear translocation and downstream antioxidative/regenerative genes expression both in vivo and in vitro. Further, verteporfin, a YAP transcriptional inhibitor, abolished PACAP-mediated hepatoprotection significantly. Meanwhile, blockade of protein kinase A (PKA)-CRE-binding protein (CREB) signaling recreated liver damage in PACAP-protected liver as well as impeded stimulation on YAP and its downstream gene expressions. Consistently, inhibition of PKA-CREB decreased PACAP-promoted YAP expression in primary hepatocytes culture, and made them vulnerable to H2O2 stress in vitro. In addition, lysophosphatidic acid, another Hippo pathway inhibitor, failed to affect PACAP-mediated hepatoprotection or hepatocellular YAP induction. This implies that PACAP regulated YAP through PKA-CREB pathway at the transcriptional level rather than canonical hippo pathway. Our study discovered the neural modulation of PACAP-YAP axis in hepatic cytoprotection and homeostasis in liver IRI. These reveal a novel insight of neuropeptide PACAP in combating liver IRI in clinical patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.