Abstract

Ciliary neurotrophic factor and bone morphogenetic proteins induce astrocytogenesis in the developing rat brain by stimulating STAT- and Smad-dependent signaling, respectively. We previously found that stimulation of the cAMP-dependent signaling pathway also triggers differentiation of cerebral cortical precursor cells into astrocytes, providing an additional mechanism to promote astrocyte differentiation. In this study, we show that pituitary adenylate cyclase-activating polypeptide (PACAP), but not the related vasoactive intestinal peptide, induces astrocyte differentiation of cortical precursor cells, even after a transient exposure. Cortical precursors were found to express predominantly the short isoform of the PACAP-specific PAC1 receptor, which couples to adenylate cyclase. Consistent with this notion, we determined that exposure of cortical precursors to PACAP resulted in a dose-dependent increase in cAMP production. Pretreatment of cells with the cAMP antagonist Rp-cAMPS prevented astrocyte differentiation. Thus, PACAP acts as an extracellular signal to trigger cortical precursor cell differentiation into astrocytes via stimulation of intracellular cAMP production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.