Abstract

Pitch-angle diffusion is a key process in the theory of charged particle scattering by turbulent magnetic plasmas. This process is usually assumed to be diffusive and can, therefore, be described by a pitch-angle diffusion or Fokker–Planck coefficient. This parameter controls the parallel spatial diffusion coefficient as well as the parallel mean free path of charged particles. In the present paper, we determine pitch-angle diffusion coefficients from numerical computer simulations. These results are then compared with results from analytical theories. Especially, we compare the simulations with quasilinear, second-order, and weakly nonlinear diffusion coefficients. Such a comparison allows the test of previous theories and will lead to an improved understanding of the mechanism of particle scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.