Abstract

We develop a two-dimensional momentum and pitch angle code to solve the typical Fokker-Planck equation which governs wave—particle interaction in space plasmas. We carry out detailed calculations of momentum and pitch angle diffusion coefficients, and temporal evolution of pitch angle distribution for a band of chorus frequency distributed over a standard Gaussian spectrum particularly in the heart of the Earth's radiation belt L = 4.5, where peaks of the electron phase space density are observed. We find that the Whistler-mode chorus can produce significant acceleration of electrons at large pitch angles, and can enhance the phase space density for energies of 0.5 ∞ 1 MeV by a factor of 10 or above after about 24h. This result can account for observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.