Abstract

Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH4PbI3 into a CH3NH3PbI3 perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. In situ Rietveld refinement analysis reveals minimal PbI2 formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI3 nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.