Abstract

Vortex generators are very effective tools in increasing heat transfer from one region to another, especially by convection, and appear to be a very promising concept to be coupled with heat recovery systems. On the other hand, Thermoelectric Generators (TEGs) are devices able to convert differences in temperature into electrical power using the Seebeck effect, the main advantage being working on high or even low differences in temperature. These TEG modules could be very effective tools in the hybridization of heat recovery systems. In this context, the present paper suggests an innovative system that couples three important energy axes together such as Heat recovery, TEGs, and Vortex generators. The current study employs a TEG in a rectangular channel to analyze the influence of the TEG on the flow and the effect of the effect of flow regime on producing electric power in order to assess the viability of this recently proposed concept. The investigation is conducted by varying the Reynolds number in a range of five values: 1000, 2000, 4000, 7000, and 10,000, applying six different configurations. Consequently, the results show that several factors affect the electrical power generated by TEG such as the emplacement, angle of attack, and absence/presence of vortex generators. On the other side, the heat recovered by the flow is affected by the TEG and Re, where the highest heat recovery is achieved at Re = 10,000 for configuration 4 with electrical power of 7.4 W, and for configuration 5 heat recovered by the flow of 1913 W. Besides, it was concluded that TEGs decreased the losses in both hot and cold sides by 1.42 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.