Abstract

When steering the dynamics of network systems, the control design needs to cope with constraints on actuation and sensing, which often imply that the same control input is injected to each node in a given subset, and this input signal is a function of the state of this node subset. This common situation cannot be modeled in terms of standard pairwise interactions on digraphs, and we propose to use directed hypergraphs as the mathematical object suitable to describe this kind of directed, multibody interactions. We apply this framework to the pinning control problem in networks of coupled linear systems, and derive necessary and sufficient conditions for convergence onto the desired trajectory set by the pinner. Furthermore, we provide a dedicated control algorithm to identify the interconnections that are critical for network control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.