Abstract

Abstract In this paper, we present pinning boundary conditions for two- (2D) and three-dimensional (3D) phase-field models. For the 2D and axisymmetric domains in the neighborhood of the pinning boundaries, we apply an odd-function-type treatment and use a local gradient of the phase-field for points away from the pinning boundaries. For the 3D domain, we propose a simple treatment that fixes the values on the ghost grid points beyond the discrete computational domain. As examples of the phase-field models, we consider the Allen–Cahn and conservative Allen–Cahn equations with the pinning boundary conditions. We present various numerical experiments to demonstrate the performance of the proposed pinning boundary treatment. The computational results confirm the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.