Abstract

Recently, a new class of three-dimensional spin liquid models have been theoretically discovered, which feature generalized Coulomb phases of emergent symmetric tensor $U(1)$ gauge theories. These ``higher rank'' tensor models are particularly intriguing due to the presence of quasiparticles with restricted mobility, such as fractons. We investigate universal experimental signatures of tensor Coulomb phases. Most notably, we show that tensor Coulomb spin liquids (both quantum and classical) feature characteristic pinch point singularities in their spin-spin correlation functions, accessible via neutron scattering, which can be readily distinguished from pinch points in conventional $U(1)$ spin liquids. These pinch points can thus serve as a crisp experimental diagnostic for such phases. We also tabulate the low-temperature heat capacity of various tensor Coulomb phases, which serves as a useful additional diagnostic in certain cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.