Abstract

This study introduced a new predictive approach for estimating the bearing capacity of driven piles. To this end, the required data based on literature such as hammer strikes, soil properties, geometry of the pile, and friction angle between pile and soil were gathered as a suitable database. Then, three predictive models i.e., gene expression programming (GEP), radial basis function type neural networks (RBFNN) and multivariate nonlinear regression (MVNR) were applied and developed for pile bearing capacity prediction. After proposing new models, their performance indices i.e., root mean square error (RMSE) and coefficient of determination (R2) were calculated and compared to each other in order to select the best one among them. The obtained results indicated that the RBFNN model is able to provide higher performance prediction level in comparison with other predictive techniques. In terms of R2, results of 0.9976, 0.9466 and 0.831 were obtained for RBFNN, GEP and MVNR models respectively, which confirmed that, the developed RBFNN model could be selected as a new model in piling technology. Definitely, other researchers and engineers can utilize the procedure and results of this study in order to get better design of driven piles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.