Abstract

The vast majority of mesh-based modelling applications iteratively transform the mesh vertices under prescribed geometric conditions. This occurs in particular in methods cycling through the constraint set such as Position-Based Dynamics (PBD). A common case is the approximate local area preservation of triangular 2D meshes under external editing constraints. At the constraint level, this yields the nonconvex optimal triangle projection under prescribed area problem, for which there does not currently exist a direct solution method. In current PBD implementations, the area preservation constraint is linearised. The solution comes out through the iterations, without a guarantee of optimality, and the process may fail for degenerate inputs where the vertices are colinear or colocated. We propose a closed-form solution method and its numerically robust algebraic implementation. Our method handles degenerate inputs through a two-case analysis of the problem’s generic ambiguities. We show in a series of experiments in area-based 2D mesh editing that using optimal projection in place of area constraint linearisation in PBD speeds up and stabilises convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.