Abstract

Macroalgae Durvillaea antarctica, Lessonia flavicans, and Macrocystis pyrifera in distinct development phases from the ecoregion of Magellan (Chile) were analyzed by pulse amplitude modulated fluorometry under eight irradiation conditions (11 to 490 μmol photons m−2 s−1). Pigmentation was assessed by UV/Vis spectrophotometry (400 to 700 nm), and fatty acid (FA) profile was determined by gas chromatography using the standards of their respective methyl esters (0.625 to 20 mg mL−1). Photosynthetic efficiency had significant differences for L. flavicans (0.31 ± 0.01 to 0.38 ± 0.01 μmol e− m−2 s−1 (μmol photons m−2 s−1)-1) and M. pyrifera (0.26 ± 0.02 to 0.31 ± 0.03 μmol e− m−2 s−1 (μmol photons m−2 s−1)-1) for reproductive and vegetative phases, respectively. The relative maximum electron transfer rate varied significantly for L. flavicans (8.10 ± 0.84 to 12.40 ± 1.57 μmol e− s−1) and M. pyrifera (6.49 ± 1.30 to 12.89 ± 1.53 μmol e− s−1) in distinct development phases. Saturation irradiance analysis showed significant differences for D. antarctica, varying from 166.18 ± 14.33 (vegetative) to 132.98 ± 18.43 μmol photon m−2 s−1 (reproductive). The highest concentrations of pigments were found in reproductive M. pyrifera with 35.36 ± 0.21 of Chl a, 7.04 ± 0.93 of Chl c, and 15.75 ± 1.42 μg g−1 of fucoxanthin. Finally, the highest concentrations of total FAs were 35.24 ± 2.38% (saturated) and 22.02 ± 1.95% (monounsaturated) in M. pyrifera and 63.53 ± 3.36% (polyunsaturated) in D. antarctica. Therefore, the study showed significant differences for photosynthetic parameters and FA profiles correlating these results to the development phases of macroalgae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.