Abstract

This paper discusses the development method of strain sensors based on acicular single crystal compound TlInTe2 is grown by Bridgman-Stockbarger technique. Creating mechanically reliable ohmic contacts on said obtained single crystals was carried out directly by spot welding wires corresponding to the ends of the capacitor discharge heated in a stream of inert gas from the single crystal TlInTe2. This method of creating contacts proved effective and reliable. Sensors made by this manner stuck to the calibrated beams of steel thickness of 1 mm, a length of 30 mm and a corresponding optimal regime got sensors with a maximum piezo-sensitivity. It was found that if enshrined at one end of a thin steel sheet with glued crystals TlInTe2 initiate periodic mechanical vibrations to the same frequency, occurs conductivity modulation. The effect of piezo-modulation conductance depending on the degree of deformation, illumination in interval of deformation and lux illumination in room temperature were studied. The study showed that the more mechanical deformation and illumination are, the more modulation amplitude is. We studied the modulation of the conductivity of crystals during mechanical deformation values of 8, 14, 19, 23 and 27 × 10-5and illuminance 1000, 2750, 4750 and 6500 suites. Investigations the level piezo-signal depending on the amplitude of mechanical vibrations at frequency of 85 Hz, it is found that with increasing magnitude of the mechanical deformation of 7 × 10-5 and 26 × 10-5 amplitude increases six times. It is shown that the piezoresistive effect is clearly manifested in dynamic mode. Additional conductivity occurs during mechanical deformation. When the illuminated samples piezoconductivity magnitude increases linearly.

Highlights

  • The interest in semiconductor compound of АIIIВIIIХ2V types, being similar to АIIIВVI arises from the presence of unpaired number of valence electrons, sharp asymmetry of chemical bond, specific peculiarities of crystal lattice structure and the possibility to realize variation at wide range in chemical composition in the frame of lattice [1] [2]

  • This paper discusses the development method of strain sensors based on acicular single crystal compound TlInTe2 is grown by Bridgman-Stockbarger technique

  • Creating mechanically reliable ohmic contacts on said obtained single crystals was carried out directly by spot welding wires corresponding to the ends of the capacitor discharge heated in a stream of inert gas from the single crystal TlİnTe2

Read more

Summary

Introduction

The interest in semiconductor compound of АIIIВIIIХ2V types, being similar to АIIIВVI arises from the presence of unpaired number of valence electrons, sharp asymmetry of chemical bond, specific peculiarities of crystal lattice structure and the possibility to realize variation at wide range in chemical composition in the frame of lattice [1] [2]. A lot of attention is put on the research of fundamental properties of ternary compounds of above-mentioned types [3]-[11]. This is due to that receiver of near infrared radiation, switching devices, elements of electric and optical memory, laser modulation devices and other functional devices used in optoelectronics were developed on the basis of these materials and their solid solutions [12]-[14]. This paper aims at studying the effects of piezo-modulation in TlInTe2 ternary compound

Experimental Technique
Experimental Results and Their Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.