Abstract
In this research, Hydroxyapatite-Potassium, Sodium Niobate-Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, mesoporous hydroxyapatite nano-powder, and potassium-sodium niobate (K0.47Na0.53NbO3) sub-micron-sized powder. The resulting materials were characterized from physical, morpho-structural, and in vitro biological points of view. The porous scaffolds were obtained by freeze-drying the composite hydrogels and had a specific surface area of 18.4-24 m2/g and a strong ability to retain fluid. Chitosan degradation was studied for 7 and 28 days of immersion in simulated body fluid without enzymatic presence. All synthesized compositions proved to be biocompatible in contact with osteoblast-like MG-63 cells and showed antibacterial effects. The best antibacterial effect was shown by the 10HA-90KNN-CSL hydrogel composition against Staphylococcus aureus and the fungal strain Candida albicans, while a weaker effect was observed for the dry scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.