Abstract

A formalism based on piecewise-linear (PL) differential equations, originally due to Glass and Kauffman, has been shown to be well-suited to modelling genetic regulatory networks. However, the discontinuous vector field inherent in the PL models raises some mathematical problems in defining solutions on the surfaces of discontinuity. To overcome these difficulties we use the approach of Filippov, which extends the vector field to a differential inclusion. We study the stability of equilibria (called singular equilibrium sets) that lie on the surfaces of discontinuity. We prove several theorems that characterize the stability of these singular equilibria directly from the state transition graph, which is a qualitative representation of the dynamics of the system. We also formulate a stronger conjecture on the stability of these singular equilibrium sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.