Abstract
The measurement of the mechanical properties of single biological cells using a picosecond laser-ultrasonic method is proposed. A pump-probe set-up based on ultrafast laser (100 fs pulses) is used to generate and detect acoustic frequencies in the GHz range in a cell on a metallic substrate. The time resolution is about 1 ps and the laser focusing allows a 1 μm lateral resolution. We carry out experiments in both animal and vegetal cells. A semi-analytical simulation model of the physical phenomena involved in experiments is presented. The coupled heat and stress equations are solved including a thermal boundary resistance at the cell/substrate interface and strong acoustic absorption. The optical detection resulting from the interaction between the acoustic wave and the laser light is also modelled. Simulations allow the analysis of experimental signals in both vegetal and animal cells. The results support the potentialities of the non-invasive technique for bioengineering and medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.