Abstract

Significance Spintronic devices have become promising candidates for next-generation memory architecture. However, state-of-the-art devices, such as perpendicular magnetic tunnel junctions (MTJs), are still fundamentally constrained by a subnanosecond speed limitation, which has remained a long-lasting scientific obstacle in the ultrafast spintronics field. The highlight of our work is the demonstration of an optospintronic tunnel junction, an all-optical MTJ device which emerges as a new category of integrated photonic–spintronic memory. We demonstrate 1) laser-induced deterministic and efficient writing by an all-optical approach and electrical readout by tunnel magnetoresistance, 2) writing speed within 10 ps, demonstrated by femtosecond-resolved measurements, and 3) integration with state-of-the-art MTJ performance and a complementary metal–oxide–semiconductor-compatible fabrication progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.