Abstract

Insulin regulates hepatic VLDL production by activation of phosphatidylinositide 3-kinase (PI3-kinase) which decreases apo B available for lipid assembly. The current study evaluated the dependence of the VLDL apolipoprotein B (apo B) pathway on PI3-kinase activity in vivo. VLDL production was examined in B100 only, apo B mRNA editing catalytic subunit 1 (apobec-1(-/-)) mice, using the Triton WR 1339 method. Glucose injection suppressed VLDL triglyceride production by 28% in male and by 32% in female mice compared with saline-injected controls. When wortmannin was injected to inhibit PI3-kinase, VLDL triglyceride production was increased by 52% in males and by 89% in females, and VLDL B100 levels paralleled triglyceride changes. Pulse-chase experiments in primary mouse hepatocytes showed that wortmannin increased net freshly synthesized B100 availability by >35%. To test whether physiological insulin resistance produced equivalent effects to wortmannin, we studied male apobec-1(-/-) mice who became hyperlipidemic on being fed a fructose-enriched diet. Fructose-fed apobec-1(-/-) mice had significantly higher VLDL triglyceride and B100 production rates compared with chow-fed mice, and rates were refractile to glucose or wortmannin. Hepatic VLDL triglyceride and B100 production in wortmannin-injected chow-fed mice equaled that observed in fructose-fed mice. Together, results suggest in vivo and in vitro that wortmannin-sensitive PI3-kinases maintain a basal level of VLDL suppression that is sensitive to changes in activation and that can increase VLDL production when PI3-kinase is inhibited to levels similar to those induced by insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.