Abstract
In the paper an improved element free Galerkin method is presented for heat conduction problems with heat generation and spatially varying conductivity. In order to improve computational efficiency of meshless method based on Galerkin weak form, the nodal influence domain of meshless method is extended to have arbitrary polygon shape. When the dimensionless size of the nodal influence domain approaches 1, the Gauss quadrature point only contributes to those nodes in whose background cell the Gauss quadrature point is located. Thus, the bandwidth of global stiff matrix decreases obviously and the node search procedure is also avoided. Moreover, the shape functions almost possess the Kronecker delta function property, and essential boundary conditions can be implemented without any difficulties. Numerical results show that arbitrary polygon shape nodal influence domain not only has high computational accuracy, but also enhances computational efficiency of meshless method greatly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.