Abstract

Phytoglycogen nanoparticles (PhG NPs), a single-molecule highly branched polysaccharide, exhibit excellent water retention, due to the abundance of close-packed hydroxyl groups forming hydrogen bonds with water. Here we report lubrication properties of close-packed adsorbed monolayers of PhG NPs acting as boundary lubricants. Using direct surface force measurements, we show that the hydrated nature of the NP layer results in its striking lubrication performance, with two distinct confinement-controlled friction coefficients. In the weak- to moderate-confinement regime, when the NP layer is compressed down to 8% of its original thickness under a normal pressure of up to 2.4 MPa, the NPs lubricate the surface with a friction coefficient of 10-3. In the strong-confinement regime, with 6.5% of the original layer thickness under a normal pressure of up to 8.1 MPa, the friction coefficient was 10-2. Analysis of the water content and energy dissipation in the confined NP film reveals that the lubrication is governed by synergistic contributions of unbound and bound water molecules, with the former contributing to lubrication properties in the weak- to moderate-confinement regime and the latter being responsible for the lubrication in the strong-confinement regime. These results unravel mechanistic insights that are essential for the design of lubricating systems based on strongly hydrated NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.