Abstract
Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.