Abstract
Phytases are enzymes of great industrial importance with wide range of applications in animal and human nutrition. These catalyze the hydrolysis of phosphomonoester bonds in phytate, thereby releasing lower forms of myo-inositol phosphates and inorganic phosphate. Addition of phytase to plant-based foods can improve its nutritional value and increase mineral bioavailability by decreasing nutritional effect of phytate. In the present investigation, 43 phytase positive bacteria on PSM plates were isolated from different sources and characterized for phytase activity. On the basis of phytase activity and zone of hydrolysis, two bacterial isolates (PSB-15 and PSB-45) were selected for further characterization studies, i.e., pH and temperature optima and stability, kinetic properties and effect of modulators. The phytases from both isolates were optimally active at the pH value from 3 to 8 and in the temperature range of 50–70 °C. Further, the stability of isolates was good in the pH range of 3.0–8.0. Much variation was observed in temperature and storage stability, responses of phytases to metal ions and modulators. The K m and V max values for PSB-15 phytase were 0.48 mM and 0.157 μM/min, while for PSB-45 these were 1.25 mM and 0.140 μM/min, respectively. Based on 16S rDNA gene sequence, the isolates were identified as Serratia sp. PSB-15 (GenBank Accession No. KR133277) and Enterobacter cloacae strain PSB-45 (GenBank Accession No. KR133282). The novel phytases from these isolates have multiple characteristics of high thermostability and good phytase activity at desirable range of pH and temperature for their efficient use in food and feed to facilitate hydrolysis of phytate-metal ion complex and in turn, increased bioavailability of important metal ions to monogastric animals.
Highlights
Most of the cereals and legumes are rich in carbohydrates and proteins but some of them have certain antinutritional factors which restrict their use in food
Bacterial strains from different sources (Poultry farm soil, Rhizospheric soils, Compost and Degraded wood samples taken from Baru Sahib, Himachal Pradesh, India) directly isolated and screened on phytase screening media (PSM) plates
All the 43 bacterial isolates were confirmed as phytase secreting bacteria (PSB)
Summary
Most of the cereals and legumes are rich in carbohydrates and proteins but some of them have certain antinutritional factors which restrict their use in food One such antinutritional factor is the phytic acid (myo-inositol 1,2,3,4,5,6hexakisphosphate; IP6) which is the major storage form of phosphorus (60–80 %), in soil (Turner et al 2002), grains (Lott et al 2000) and manures from monogastric animals (Barnett 1994). It acts as an antinutrient as it chelates various micronutrients such as Ca2?, Fe2?, and Zn2? Phytases (myo-inositol hexaphophohydrolase; EC. 3.1.3.) are the class of phosphatases which are capable
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.