Abstract
Microplastics, which serve as sources and vector transport of organic contaminants in both terrestrial and marine environments, are emerging micropollutants of increasing concerns due to their potential harmful impacts on the environment, biota and human health. Microplastic particles have a higher affinity for hydrophobic organic contaminants due to their high surface area-to-volume ratio, particularly in aqueous conditions. However, recent findings have shown that the concentrations of organic contaminants adsorbed on microplastic surfaces, as well as their fate through vector distribution and ecological risks, are largely influenced by prevailing environmental factors and physicochemical properties in the aquatic environment. Therefore, this review article draws on scientific literature to discuss inherent polymers typically used in plastics and their affinity for different organic contaminants, as well as the compositions, environmental factors, and polymeric properties that influence their variability in sorption capacities. Some of the specific points discussed are (a) an appraisal of microplastic types, composition and their fate and vector transport in the environment; (b) a critical assessment of sorption mechanisms and major polymeric factors influencing organic contaminants-micro (nano) plastics (MNPs) interactions; (c) an evaluation of the sorption capacities of organic chemical contaminants to MNPs in terms of polymeric sorption characteristics including hydrophobicity, Van der Waals forces, π–π bond, electrostatic, and hydrogen bond interactions; and (d) an overview of the sorption mechanisms and dynamics behind microplastics-organic contaminants interactions using kinetic and isothermal models. Furthermore, insights into future areas of research gaps have been highlighted.
Highlights
Plastic pollution in the terrestrial environment and marine ecosystems is pervasive and has evolved as an emerging global challenge due to exponentially increasing production rates, distribution and consumption of single-use plastics
The mechanisms controlling the sorption of organic compounds on plastic polymers are not fully understood yet as most studies are carried out indoors under conditions that represent the real environment
Hydrophobicity of persistent organic pollutants (POPs), the surface area of plastic polymer, and polymer makeup are three significant factors that influence the sorption of POPs on plastic polymers
Summary
Plastic pollution in the terrestrial environment and marine ecosystems is pervasive and has evolved as an emerging global challenge due to exponentially increasing production rates, distribution and consumption of single-use plastics. Micro (nano) plastics (MNPs) are generally speculated to have increased environmental and health threats to marine organisms primarily due to their small size, predicted ubiquitousness, direct and indirect intake of plastic particles, bioavailability and enhanced concentrations of sorbed toxic chemicals (Setälä et al, 2018; Yu et al, 2018; Cole et al, 2020; Fred-Ahmadu et al, 2020a; Fred-Ahmadu et al, 2020b; Xu et al, 2020; Yu and Chan, 2020). Plastics comprise chemical additives that are usually not chemically bonded to the plastic particles molecules and are likely to get leached into the surrounding aqueous medium (Benson and Fred-Ahmadu, 2020; Wright and Kelly, 2017).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.